
Entropy, Relative Entropy and Mutual Information  
Chapter 2 note taking of "Elements of Information Theory"

 

Entropy (Self-Information)  

Entropy measures the uncertainty of a random variable, formulated as follows:

 

where  is a discrete random variable, and  is a probability mass 
function.

Remark 2.1: Note that entropy is about the probability distribution, which does not depend on the 

actual values (such as vectors) taken by the random variable .

Intuitively, the amount of information (entropy) is related to the probability of an event. For 
instance, if something happens with 100% certainty, it doesn't carry any useful information, and 
the entropy is 0. 

Some lemmas related to the definition of entropy:

Lemma 1:  

Lemma 2: 

Joint Entropy and Conditional Entropy  

Since  defines the entropy of a single random variable, it can be extended to a pair of 
random variables , called Joint Entropy, defined as follows:

 

Moreover, I can define entropy conditioned on a second variable from the pair , called 
Conditional Entropy, as follows:
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Then, based on the definitions of joint and conditional entropy, I can prove the following 
theorem:

 

Proofs:

 

Relative Entropy and Mutual Information  

Relative Entropy, denoted as , measures the difference betIen two probability 
distributions. HoIver, it is not a true distance metric, since it is not symmetric and does not 
satisfy the triangle inequality. Therefore, it's better to think of  as a measure of the 
"gap" or divergence betIen two distributions  and . 

This measure is known as the Kullback-Leibler Divergence (KL Divergence), and it is defined 
as:

 

KL Divergence is always non-negative (mostly positive), and it equals zero if and only if  
. 

Remark 2.2: In the field of deep learning, the distribution  is often assumed to be the true but 

unknown distribution I aim to approximate, while distribution  is a known and tractable 

distribution, such as a Gaussian Distribution. This concept is widely used in generative models (e.g., 

VAE, diffusion models, flow matching), where minimizing KL divergence helps the model learn to 

resemble the true data distribution.
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Then, I can measure the amount of information that one random variable contains about 
another random variable based on KL Divergence. I define this as Mutual Information, 
denoted as . This is essentially the relative entropy between the joint distribution and 
the product of their marginal distributions, defined as follows:

 

To understand this term intuitively, it's helpful to derive it in reverse. For instance, let's first 
consider the meaning of . According to the definition of KL Divergence, 

 represents how far the joint distribution is from independence between 
 and . If  and  are completely independent, then , and we 

get , leading to . This means there is no shared 
information between  and .

Relationship Between Entropy and Mutual Information  

It can be derived mutual information in terms of entropy as follows:

Proofs:

 

As previously explained, the meaning of  can also be intuitively understood through the 
concept of entropy.
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For example, suppose a transmitter is trying to communicate a message, which we represent as 
a random variable . The receiver observes a signal, represented as another random variable 

, that is influenced by . In this context, the entropy  measures the total amount of 
uncertainty — or potential information — in the message being transmitted. Once the receiver 
observes , they can try to infer the original message . If  provides full information about 
, the uncertainty in  after observing  becomes minimal. If  is noisy or incomplete, the 
uncertainty remains higher.

This remaining uncertainty is captured by the conditional entropy . In other words, a 
larger  indicates more uncertainty remains about the original message, meaning the 
receiver didn’t recover it fully. A smaller  implies the receiver was able to infer  more 
precisely. Therefore, mutual information  quantifies the 
reduction in uncertainty about the sender’s message  due to the receiver’s observation 

.

Back to the notation, the relationship between entropy and mutual information can be 
summarized as:

1. 

2. 

3. 

4. 

5.  

Chain Rules of Entropy, Relative Entropy, and Mutual Information  

Joint entropy can be expressed as the sum of conditional entropies:

 

Based on this property, we define conditional mutual information as:

 

This leads us to the chain rule of mutual information:

 

Remark 2.3: These definitions are grounded in the fundamental property of probability distributions, 

known as the chain rule.

Additionally, we can define conditional KL divergence as:
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Jensen's Inequality and Its Consequences  

In information theory, properties of convex functions play a fundamental role. A function is 
defined as convex as follows:

 

The function  is strictly convex if the equality holds only when  or , and  is then 
referred to as concave.

To build intuition, consider a quadratic function: . If the second derivative 
is non-negative, i.e., , then the function is convex (or strictly convex if ). More 
generally, convexity can be analyzed using a Taylor series expansion around a point :

Proof:

 

where  lies between  and . Assume that , and let . 
Setting , we get:

 

Similarly, by taking :

 

Now, multiplying  by  and  by , then summing:

 

This recovers the definition of a convex function, thereby completing the proof.  
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Next, we introduce one of the most widely used inequalities across various fields such as 
machine learning, deep learning, and information theory — Jensen's Inequality:

 

where  is a convex function and  is a random variable.

Thanks to Jensen's Inequality, quantities such as KL divergence, mutual information, and their 
conditional forms between two probability distributions  and  are guaranteed to be non-
negative (and often strictly positive). Equality holds if and only if .

Log-Sum Inequality and Data-Processing Inequality  

Now, we explore an important consequence of the concavity of the logarithm function, known 
as the log-sum inequality. This inequality plays a crucial role in proving that entropy is 
concave:

 

with equality if and only if , a constant for all .

Proof:

Let  and , and define the function . This function is strictly convex 
because its second derivative is

 

Applying Jensen's Inequality:

 

where  and . Now, choose

 

Then the inequality becomes:

 

Multiplying both sides by , we recover the log-sum inequality. 
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Next, The Data-Processing Inequality (DPI) is a fundamental result in information theory that 
formalizes the intuition that "no clever manipulation of data can increase information." 
Specifically, it states that if a random variable  influences  only through an intermediate 
variable , then the mutual information between  and  cannot exceed that between  and 

.

Formally, consider a Markov chain:

 

which means that  and  are conditionally independent given , i.e.,

 

Then, the Data-Processing Inequality states with Markov chain :

 

In other words, processing data (from ) cannot increase the amount of information  
has about .
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